
~ )  Pergamon 
Int. J. Multiphase Flow Vol. 23, No. 1, pp. 25-35, 1997 

Copyright © 1996 Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

P I I :  S0301-9322(96)00044-4 O3Ol-9322/97 $17.oo + o.oo 

HYDRODYNAMIC PROPERTIES OF FRACTALS: 
APPLICATION OF THE LATTICE BOLTZMANN 
EQUATION TO TRANSVERSE FLOW PAST AN 

ARRAY OF FRACTAL OBJECTS 

A. ADROVER~t and M. GIONA 2 
~Dipartimento di Ingegneria Chimica, Universith di Roma "La Sapienza", Via Eudossiana 18, 

00184 Roma, Italy 
:Dipartimento di Ingegneria Chimica, Universith di Cagliari, Piazza d'Armi, 09123 Cagliari, Italy 

(Received 15 December 1994; revised form 12 June 1996) 

Alrstraet--The numerical solution for slow flow past a square array of fractal objects, such as a diffusion 
limited aggregate (DLA), is addressed by means of the lattice Boltzmann equation (LBE), including a body 
force term. While the calculated values of the seepage velocity are shown to be independent of the fractal 
dimension of the objects, the drag force exerted by the fluid is closely linked to fractal dimension. 
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1. INTRODUCTION 
The theoretical analysis of  the creeping flow of  a viscous fluid past an array of  solid objects is part  
of  the broader  study of  the relative motion of  a mixture of  a fluid and solid bodies. In the case 
of  cylindrical objects, both parallel and transverse flows are of  mathematical  interest since they 
involve the evaluation of some indeterminate factors and the use of  analytic continuation methods 
around singularities. The literature in the field presents several numerical and analytical 
approximations for the Stokes equation in the case of  a viscous fluid flowing either parallel or 
perpendicular to the axes of  cylinders in square, rectangular, triangular and hexagonal arrays for 
low and high solid densities (Drummond and Tahir 1984; Sangani and Acrivos 1982(a),(b); 
Sparrow and Loeffler 1959). For  a comprehensive review see Drummond  and Tahir (1984). 

In each case none of  the analytical approaches developed for viscous flow through an array of  
cylinders can be used if the objects in the elementary cell are 2D fractals (Vicsek 1989; Falconer 
1990), due to the complex nature of  the boundary conditions to be imposed. 

The major  purpose of  the present article is to determine the hydrodynamic properties of  fractal 
objects, such as a diffusion limited aggregate (DLA) (see Vicsek 1989), in a square array 
configuration. In particular, we focus on the seepage velocity and on the drag force exerted on the 
objects by the fluid at low and high solid densities. This problem is addressed by means of  the lattice 
Boltzmann equation. 

Lattice gas au tomata  (LGA) (Frisch et al. 1987; Wolfram 1986) and the lattice Boltzmann 
equation (LBE) (McNamara  and Zanetti 1988; Higuera and Himenez 1989; Succi et al. 1991) have 
been developed in the last decade as a new method, alternative to direct simulation and to spectral 
techniques, for solving the partial differential equations of  field mechanics and transport  (Chen 
et al. 1991; McNam ara  1990; Papatzacos 1989; van der Hoef  and Frenkel 1991; Balasubramanian 
et al. 1987; Rothman  1988). The ease with which arbitrary complex boundary conditions are 
handled by the LBE approach (Succi et al. 1989; Ginzbourg and Alder 1994) leads us to tackle 
a great variety of  problems related to the physics of  disordered and fractal media, e.g. the 
calculation of  t ransport  coefficients and fluid mechanical properties in terms of  the microscopic 
parameters characterizing the structure. 

tTo whom correspondence should be addressed. 
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The article is organized as follows. First, we review the fundamental steps in the development 
of the LBE from the Boolean up to the mean-fluid formulation, also discussing the modification 
of the collision-propagation microdynamic LBE by means of the introduction of a body force. Then 
we apply the LBE to the study of transverse viscous flow through a square array of cylinders and 
compare the LBE results with the Sangani and Acrivos solution and analytical expression for highly 
diluted and highly concentrated arrays. Finally, we consider transverse viscous flow through a 
square array of DLA, studying the dependence of the seepage velocity and the drag force on the 
gyration radius and on the fractal dimension. 

2. LGA: FROM MICRODYNAMICS TO THE NAV1ER-STOKES EQUATION 

Mass and momentum conservation are the local rules governing the dynamics of LGA. 
These automata can be viewed as a set of pseudo-particles with unit mass and unit speed 
constrained to move along the links of a regular lattice (Frisch et al. 1987; Wolfram 1986). 

The automaton state is entirely specified in terms of a set of Boolean variables ni(r, t) taking 
the value one or zero according to whether the r site holds a particle moving along the ith link 
or not. A set of collision rules governs momentum transfer between pseudo-particles as in a real 
fluid. The simultaneous presence of two or more particles with the same speed at the same spatial 
location is forbidden (exclusion principle). Collisions at each lattice site and the subsequent 
propagation step define the spatial and temporal evolution of the Boolean field ni(r, t) described 
by means of the microdynamic equation 

m(r + c~, t + 1) = re(r, t) + ~,(n), [1] 

where ci (i = 1 . . . .  , b) is the set of unit vectors connecting a given site of the lattice with its b nearest 
neighbours, and ~ the collision operator, representing the change in the ith occupation number 
due to collisional interaction. 

Because of the mass and momentum conservation rules, the collision term satisfies the following 
relations: 

b b 

E ~)~= 0, Z ~,c, = 0. [2] 
i ~ l  i = 1  

Collisions conserve mass and momentum locally, whereas propagation conserves them globally. 
As a consequence of the one-speed nature of the automaton, total kinetic energy is automatically 
conserved, being indistinguishable from mass conservation. 

In order to obtain the Navier-Stokes equation, as discussed below, the lattice must be 
symmetrical enough to ensure isotropy up to at least the fourth order tensor (Frisch et al. 1987; 
Wolfram 1986). This is the case of the hexagonal FHP lattice in two dimensions and of the 
face-centered hypercubic (FCHC) lattice in four dimensions (used for three-dimensional 
simulations). Figure 1 shows, for the FHP lattice, one possible set of collision rules conserving mass 
and momentum and capable of avoiding spurious invariants (Diemer et al. 1990). 

The spatial and temporal evolution of the automaton can be described by introducing the mean 
quantities per node N,, so that the density p and mass current j are defined as 

Ni(r, t) = (n~(r, t)), [3] 

p(r, t) = ~ Nt(r, t), [4] 
i 

j(r, t) = ~ c~N~(r, t) = p(r, t)u(r, t), [5] 
i 

u being the mean velocity and ( . )  standing for ensemble average. 
On a very large lattice, space and time can be regarded as continuous by considering local 

equilibria varying slowly from point to point. Under the assumption of small Mach numbers, it 
is possible to use multiscale perturbative analysis to derive from the conservation relations [2] the 
macrodynamical  equations, i.e. balance equations for the large-scale and long-term behaviour of 
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Figure 1. Collision rules of FHP-III nondeterministic model B (Diemer et  al. 1990). 

density and mass currents in the continuum limit. By considering up to second-order terms in 
velocity and gradients, we obtain (Frisch et al. 1987) 

~,p + div(pu) = 0 [6] 

~,(pu~) + ~(g(p)pu~u~) = - ~ P ( p ,  u) + ~a(v~(pu~)) + ~ ( ~ - - ~  v + ~ )div(pu), [7] 

where 

D p 1 - 2 d  
g(P) - D + 2 pm 1 -  d [8] 

P(p,u) pmc2 cC~( D c 2 ) - -  U 2. 
D - Pg(P) 1 + 2 2c 2 [9] 

In [6]-[9], cs is the speed of  sound, pm the density of the moving particles, d the density per link 
at uniform steady state, and v and ( are the kinematic shear and bulk viscosities which depend 
on the density and on the collision rules adopted (Diemer et al. 1990). In [6]-[9], ~, = ~/~t, 
~fl = ~/Ox B, (fl = 1 . . . . .  D)  and the Einstein summation convention is adopted. 

It can be shown (Frisch et al. 1987) that, despite the presence of  the factor g(p),  which 
is responsible for the non-Galileian invariance of  the macrodynamical equation [7], the 
Navier-Stokes equation for incompressible flow can be recovered exactly by freezing the density 
at a constant and uniform value p0 everywhere except in the pressure term and rescaling time 
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t '  ---* t/g(po) and viscosity v' ---. vg(po). On the other hand, simulation of compressible flow is still 
an open question (Qian et al. 1992; Qian and Orszag 1993). 

3. THE LATTICE BOLTZMANN EQUATION AND BODY-FORCE FORMULATION 

In the Boltzmann approach, on the assumption that particles entering into collision have no prior 
correlation, the occupation numbers n, in the microdynamical equation [1] are replaced by the 
corresponding mean population N~ (Higuera and Himenez 1989; McNamara and Zanetti 1988). 

By supplementing the averaging procedure with the statistical assumption of molecular chaos, 
one derives the lattice Boltzmann equation (LBE), which in the linearized version (eliminating rest 
particles for the sake of simplicity) reads as (Higuera et al. 1989, Succi et al. 1991) 

N,(r + c/, t + 1) = Ni(r, t) + ~ (I)ii(N/(r, t) - NTq(r, t)) + f ( r ,  t), [10] 
i 

an(N,) N~ [11] 
dp,j -- ~N, = ,/ 

where ¢I)~ is the linearized collision matrix (evaluated at the zero velocity equilibrium, 1.e. linearized 
around the uniform steady state N~ = d) and NTq the Fermi-Dirac equilibrium distribution of the 
mean population N~ (Frisch et al. 1987). 

The lattice body force f ( r ,  t) is introduced in the LBE for the following reasons. The LBE 
simulates the Navier-Stokes equations successfully in the case of incompressible flow at low Mach 
numbers. In this case, the pressure field P, [9], scales linearly with the density of the moving particle 
pro. This represents an intrinsic constraint in the lattice gas dynamics, equivalent to an equation 
of  state, which limits the possibility of  forcing an arbitrary pressure drop without making use of 
an external body-force term. In LBE simulations, pressure gradients and body forces can be 
included simply by adding a lattice body force f ( r ,  t) to the microdynamic equation, satisfying the 
mass conservation rule E~f = 0 (Kadanoff  et al. 1987; Benzi and Succi 1989). In the case of 
constant density simulations, the net local body force f is related to the pressure gradient VP and 
to volume forces pa through the relation 

~ f c , = f =  -VP+pa.  [12] 
i 

The body force f may depend on space and time, may be independent of the velocity (e.g. gravity), 
may be linear in velocity (e.g. the Coriolis force) or may derive from a generic potential distribution 
acting on the fluid. In two-dimensional FHP simulations, by further taking into account the 
different row and column spacing, the relation between the lattice vec to r f  and the vector f = (J~ ,J~) 
is given by 

where 

f ( r ,  t) = ~ -- f 0 ) +  2x/3 

f " ' = { 1 , 1 ,  -- 1, -- 1, -- 1,1}, f , 2 ) = { 1 , 1 , 1 ,  -- 1, -- 1, -- 1} [14] 

are lattice vectors determining a net momentum transfer in the directions associated with the unit 
lattice vectors c~, ez (see figure 1). 

Let us consider, for example, the flow motion of an incompressible fluid through an N x N 
elementary cell in the presence of some solid obstacles and periodic boundary conditions (at the 
edges of  the unit cell). 

The implementation of  [10] involves three steps for each time instant: the collision step, the 
propagation step and the reflection step. The latter is introduced to express the boundary 
conditions. The no-slip boundary conditions at the solid walls are implemented in terms of particle 
reflection on the solid wall and bouncing back. Let r be a node in the fluid and r + e / a n  adjacent 



HYDRODYNAMIC PROPERTIES OF FRACTALS 2 9  

node belonging to the solid boundary. In the propagation phase, Nr(r, t + 1) moves into 
Nr(r + e,,, t + 1). In the reflection step, the mean population N,,(r + e~,, t + 1) bounces back to the 
node r with a reverse velocity cr = - er, Nr,(r, t + 1) = Nc(r + er, t + 1). Because of  the reflection 
condition, the population of  sites belonging to the solid boundary are at the end of  the entire 
procedure (collision/propagation/reflection) associated with a single time instant identically equal 
to zero. 

Let Ns be the number of  sites occupied by solid bodies. In order to force an arbitrary constant 
pressure gradient V P  in the c~ direction, a constant body force should be applied in each r fluid 
site 

f ( r ,  t) = ( - - V P / 4 ) f  °). [15] 

From a simple balance equation of forces acting on the fluid, the total drag force F exerted on 
the solid obstacles can be evaluated and read as 

.61 F = ( - V P ) N 2 h  2 1 - ~  , 

where h is the unit lattice site size, rescaled so as to take into account the exagonal geometry of 
each node. However, the detailed knowledge of the pointwise velocity field given by the LBE allows 
us to estimate to total drag force F also numerically and [16] can be used to check the accuracy 
of  the simulations. 

4. TRANSVERSE FLOW THROUGH A SQUARE ARRAY OF CYLINDERS 

Exact results for the drag on a cylinder in a periodic array as a function of  the volume fraction 
of  the solid are still not available, even for the simple case of creeping flow. Different numerical 
techniques for solving the governing equations can be found in the literature because of  the 
importance of  this configuration in the design of  a great deal of heat and mass transfer equipment 
(Sangani and Acrivos 1982(a)). This problem can easily be addressed by means of  the LBE. 

Let us consider the transverse steady motion of  an incompressible viscous fluid at very low 
Reynolds numbers through a periodic array of  cylinders of  radius al, 2l being the center-to-center 
distance between two adjacent cylinders. Let the fluid have a mean velocity U in the y direction 
(see figure 2) with zero velocity on the cylinder walls and be driven by a pressure gradient - V P  
in the y direction. 

Figure 3 shows the agreement of  the LBE simulation results with the two analytical expressions 
and numerical results (solid line) obtained by Sangani and Acrivos (Sangani and Acrivos 1982(a)). 
This figure shows the dimensionless quantity g = 4 ( -  V P ) F / p U  as a function of the volume fraction 
c = ha2~4. The first analytical expression (dotted curve) 

I 2c -- 0.79589781c 2 l - J  
g = 8n I n ( l / c ) -  1.47633597 + 1 + 0.4-~]-92--~-~c~ 1-~04-86942ciJ ' [17] 

derived by Drummond and Tahir (1984), applies to dilute arrays (c<< 1). The second expression 
(broken curve) is valid for concentrated arrays. In this case, the application of  the usual 
lubrication-type approximation gives 

{ ( c ? q  -5j2 
g-~ (91t/Zx/~) 1 - \Cm,.J J , Cm,x = ~/4. [18] 

Sangani and Acrivos (Sangani and Acrivos 1982(a)) numerically solved the creeping flow 
equations of  motion by making use of  a Taylor series expansion of  the stream function and 
vorticity. The calculated values of  g(c) are shown to be in excellent agreement with the 
corresponding asymptotic expression, [17]-[18] for c<<l and for C---*Cmax furnishing also an 
accurate description of  the transition range 0.25 < c < 0.4. In fact, the maximum relative error 
£SA = [gSA - -  g,,eorl/g,heor of  the Sangani Acrivos data for low and high concentrated arrays is less than 
10 -3. In the transition range 0.25 < c < 0.4, ESA attains the maximum value ESA -- 4 × 10 -2 with 
respect to [17], 
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Figure 3. Behaviour of g = 4(-VP)12//tU vs c =  ~za2/4 for 
incompressible fluid motion, at low Reynolds numbers, 
through a square array of cylinders. The points are the 
results of the LBE simulations on an N x N elementary 
cell (see figure 2). The figure shows the Sangani Acrivos 
data (solid line) and the analytical results, [17]-[181, 
valid respectively for dilute and concentrated conditions 

(dotted lines). 

and ~SA ~-- 6 X 10 -2 with respect to [18]. Since the analysis of  Sangani Acrivos is valid for all the 
range of c and is in good agreement with the analytical expressions valid for small and large c, 
[17]-[18], we will refer to it in order to compare the simulation results obtained by applying the 
LBE. 

LBE simulations were performed on elementary cells of  size 100 × 100, 200 x 200 and 
400 x 400 lattice units by introducing a body force (to impose a fixed pressure gradient) and 
choosing non-slip conditions at the cylinder walls and periodic boundary conditions at the edges 
of  the unit cell. 

The convergence of the LBE results to the exact solution with the increasing of the lattice 
size is analysed in figure 4, where the relative error ~ = ]gt.BE - gsA]/gsA between the LBE result 
gLBE and the Sangani-Acrivos data gSA is plotted vs c for different values of  N. It can be observed 
that for N = 400 the percentage error is about  10% over the whole range of c, which can be 
considered a fairly satisfactory result by further observing that the range of g spans over four 
decades. 

5. TRANSVERSE FLOW T H R O U G H  A SQUARE ARRAY OF FRACTAL OBJECTS 

Given the satisfactory results of  the numerical check considered above we can go on to study 
more complex boundary conditions by substituting the cylinder in the elementary cell with a fractal 
object, specifically a diffusion limited aggregate (DLA) which admits a fractal dimension Df - 1.7 
(Vicsek 1989). 

The hydrodynamic properties of  fractal objects have been addressed by many authors 
(Meakin et  al. 1985; Chen et  al. 1984; Adler 1987, Alder et  al. 1990). In particular, Adler 
(Adler 1987) has studied the flow around two-dimensional fractal objects in the zero Reynolds 
number  limit, determining the seepage velocity and the drag force exerted by the fluid on 
Witten Sanders (DLA) and cluster~luster  aggregates (Vicsek 1989). Adler claims that the 
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Figure 5. Comparison of  the behaviour of  g(c) vs c for D LA 
and Sangani-Acrivos data for cylinders. The simulations 

were performed on N x N unit cells. 

seepage velocity and the drag force are primarily functions of  the gyration radius, while the 
role of  the fractal dimension, if any, is very weak and the average drag is very close to that of 
circular cylinders. 

5.1. Seepage velocity 

The LBE simulation results for creeping flow through a square array of DLA are presented in 
figure 5, which shows the behaviour of g as a function of the dimensionless parameter c = ha2~4, 
al being the radius of  the circle in which the considered DLA is inscribed. In practical terms, 
2al can be viewed as the projection of  the fractal object on a plane orthogonal to the fluid motion 
direction. 

The simulation results of  figure 5 clearly indicate that, for low Reynolds numbers, a DLA 
of  radius al and the cylinder in which the DLA is inscribed have the same hydrodynamic 
behaviour, i.e. from a macroscopic point of view, the fluid sets up its motion to the same mean 
velocity. 

This means that two different radially symmetrical objects, having different fractal dimensions 
but the same projection orthogonal to the flow direction, exhibit the same hydrodynamic resistance 
to the fluid motion. 

This result does not appear to contradict Adler's arguments if it is borne in mind that the ratio 
between the gyration radius of  a cylinder (in 2D) and the gyration radius of  a DLA inscribed 
in the cylinder is very close to unity, in the range of the R~ considered in our simulations (see 
figure 6). It should also be observed that the largest object considered by Adler has a lattice 
size of  64 pixels (!), while in our simulations the size of  DLA clusters ranges from 500 to 13000 
lattice units. 

In order to understand whether the linear size al or the gyration radius Rg controls the 
hydrodynamic resistance, we analyze the incompressible flow in a square array of  one-dimensional 
cross-like objects (see figure 2) for which the ration R~/al differs significantly from the 
corresponding ratio for a cylinder or for a DLA (figure 6). 

Figure 7 shows the behaviour of  g vs c in the case of the cross-like object for different values 
of  N and the comparison with the most accurate LBE results for the square array of  cylinders 
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(N = 400) and with the Sangani-Acrivos curve. As can be noted from figures 3, 5 and 7, for all 
the structures considered (cylinders, DLA, cross-like objects) the g vs c data practically collapse 
onto the Sangani-Acrivos curve. 

This result enables us to conclude that for two-dimensional flow the fractal dimension is 
irrelevant to hydrodynamic behaviour at low Reynold numbers and that the linear size controlling 
hydrodynamic resistance is given by the projection of  the object in the direction orthogonal to the 
fluid motion and not by the gyration radius. 

5.2. Drag force 

We have shown that on applying the same pressure gradient to a fluid flowing through a square 
array of  cylinders and through a square array of  DLAs having the same linear dimension al, the 
fluid sets up its motion to the same mean velocity independently of the fractal dimension of the 
object. 

However, the fractal dimension plays a leading role when the drag force exerted by the fluid is 
considered. 

Under the same fluid dynamical conditions (the same pressure gradient VP and the same 
resulting seepage velocity U) it is possible to compare the total drag force exerted by the fluid on 
the cylinder Fc and on the DLA, Fo, having the same linear dimension al. 

Let Nc and No be the numbers of  obstacle sites in the elementary cell N × N, belonging 
respectively, to the cylinder and to the DLA. In terms of  the linear dimension al, Nc and ND 
read as 

No= ! th, ) , No--  = ~ O t h )  , [191 

where h is the unit lattice site size, D = 2, Df ~ 1.7 the DLA fractal dimension and (~D the prefactor 
relating the DLA gyration radius R, to the linear dimension al, (Rg = ~ t o a l ,  0C D ~ 0 . 6 8 ) .  By applying 
[16], the ratio Fo< between the total drag force acting on the DLA Fo and on the cylinder Fc 
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attains the form 

FD A rE --  ~Do~(al/h )D~ 
FDc = ~ = N 2 _ n (a l / h )2  • [201 

Nevertheless, detailed knowledge of the pointwise velocity field of fluid around the object allows 
us to estimate the drag force exerted on the object itself also numerically. Figure 8 shows the 
numerical results of Foo as a function of a l / h  and the comparison with [20], highlighting the accuracy 
of the simulations and the validity of [20]. 

This result contrasts with those of Adler, who claims that the average drag exerted on a fractal 
object does not depend on its fractal dimension. Figure 8 clearly shows that for small sizes of the 
DLAs, the ratio Fo c is very close to unity and this can explain the disagreement with the conclusions 
of Adler, who considers only very small aggregates (made at most by 64 lattice units). In our 
calculations the fractal aggregates are larger by one to two orders of magnitude. It should be 
also noticed that in Adler's analysis the fluid is confined between two parallel flat plates. The 
presence of these plates modifies the streamlines significantly (with respect to our simulations 
with fully periodic boundary conditions) and limits the hydrodynamic study to low values of the 
void fraction c. 

6. CONCLUSIONS 

The LBE is a computational method which easily handles complex boundaries by representing 
the boundary conditions in terms of particle reflection and bouncing back. In particular, the effect 
of disorder and fractality on convective-driven phenomena can be properly addressed by means 
of the LBE including a body-force term. 

Detailed knowledge of the pointwise velocity field in the presence of fractal objects allows us 
to estimate the hydrodynamic radius and the friction factor as a function of geometric parameters 
characterizing the obstacle structure. 

We have shown that, in the case of transverse flow of a viscous fluid through a square array 
of DLA and through an array of one-dimensional radial symmetric cross-like objects, the 
corresponding seepage velocity depends on the linear dimension al  and does not depend on the 
fractal dimension, while the total drag force is a function of the fractal dimension. Our analysis 
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refers to obstacles having fractal dimensions Df = 1,1.7 and 2 and over the entire range of void 
fractions c. 

For small values of al, the LBE results for the hydrodynamic resistance of fractal aggregates 
agree with those presented by Adler. As discussed above, this depends on the fact that 
Adler's analysis is valid only for small c. Deviation from Adler's data, which consider very small 
clusters and non-periodic boundary conditions, occurs for larger cluster sizes and correspondingly 
for higher values of c. All the results obtained are valid in the limit of low Reynolds numbers 
(creeping flow). 

Acknowledgements--The authors thank A. Paglianti, M. Schwalm, W. A. Shwalm and A. Viola for useful 
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